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l nterest in the study of neural networks has grown remarkably in the last several years. This

effort has been characterized in a variety of ways: as the study of brain-style computation,

connectionist architectures, parallel distributed-processing systems, neuromorphic computation,

artificial neural systems. The common theme to these efforts has been an interest in looking at

the brain as a model of a parallel computational device very different from that of a traditional

serial computer.

The strategy has been to develop
simplified mathematical models of
brain-like systems and then to study
these models to understand how vari-
ous computational problems can be
solved by such devices. The work has
attracted scientists from a number of
disciplines: neuroscientists who are
interested in making models of the
neural circuitry found in specific
areas of the brains of various animals;
physicists who see analogies between
the dynamical behavior of brain-like
systems and the kinds of nenlinear
dynamical systems familiar in physics;
computer engineers who are inter-
ested in fabricating brain-like com-
puters; workers in artificial intelli-
gence (Al) who are interested in
building machines with the intelli-
gence of bioclogical organisms; engi-
neers interested in solving practical
problems; psychologists who are in-
terested in the mechanisms of human
information processing; mathemati-
cians who are interested in the math-
ematics of such neural network sys-
tems; philosophers who are
interested in how such systems
change our view of the nature of

mind and its relationship to brain;
and many others. The wealth of tal-
ent and the breadth of interest have
made the area a magnet for bright
young students.

Although the details of the propos-
als vary, the most common models
take the neuron as the basic process-
ing unit. Each such processing unit is
characterized by an activity level (rep-
resenting the state of polarization of a
neuron), an output value (represent-
ing the firing rate of the neuron), a
set of input connections, (represent-
ing synapses on the cell and its den-
drite), a bias value (representing an
internal resting level of the neuron),
and a set of output connections (rep-
resenting a neuron’s axonal projec-
tions). Each of these aspects of the
unit are represented mathematically
by real numbers. Thus, each connec-
tien has an associated weight (synap-
tic strength) which determines the
effect of the incoming input on the
activation level of the unit. The
weights may be positive (excitatory)
or negative (inhibitory). Frequently,
the input lines are assumed to sum
linearly yielding an activation value

for unit ¢ at time ¢, given by

m(t) = 2wxft) + B,
4

where w; is the strength of the con-
nection from unif; to unit;, B; is the
unit’s bias value; and x; is the output
value of unit j.

Note that the effect of a particular
unit’s output on the activity of an-
other unit is jointly determined by its
output level and the strength (and
sign) of its connection to that umnit. If
the sign is negative, it lowers the acti-
vation; if the sign is positive it raises
the activation. The magnitude of the
output and the strength of the con-
nection determine the amount of the
effect. The output of such a unit is
normally a nonlinear function of its
activation value. A typical choice of
such a function is the sigmoid. The
logistic,

it = 3
W=

T

illustrated in Figure 1, will be em-
ployed in the examples illustrated
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FIGURE 1. A simple sigmoidal
output function

FIGURE 2. Asimple three-layer
network. The key to the effec-
tiveness of the multilayer net-
work is that the hidden units
learn to rerepresent the input
variables in a task-dependent
way.

later. The parameter of the logistic 7,
yields functions of differing slopes. As
T approaches zero the logistic be-
comes a simple logical threshold
function which takes on the value of 1
if the activity level is positive and zero
otherwise.

A brain-style computational device
consists of a large network of such
units, richly connected to one an-
other. In real brains there are tens of
billions of such units and tens of tril-
lions of such connections. Such a net-
work is a general computing device.
The function it computes is deter-
mined by the pattern of connections.
Thus, the configuration of connec-
tions is the analog of a program. The
goal is to understand the kinds of al-
gorithms that are naturally imple-
mented by such networks.

Although there has been a good
deal of activity recently, the study of
brain-style computation has its roots
over 50 years ago in the work of Mc-
Culloch and Pitts [7] and slightly later
in Hebb’s famous Organization of Be-
havior [4]. The early work in artificial
intelligence was torn between those,

Output units

Input units

who believed that intelligent systems
could best be built on computers
modeled after brains [9, 13, 17], and
those like Minsky and Papert [7] who
believed that intelligence was funda-
mentally symbol processing of the
kind readily modeled on the von
Neumann computer. For a variety of
reasons, the symbol-processing ap-
proach became the dominant theme
in Al. The reasons for this were both
positive and negative. On the one
hand, the stored-program digital
computer became the standard of the
computer industry. Such computers
were easy to design and easy to pro-
gram. The symbol-processing/logic-
based approach to Al is well suited
for such an architecture. On the
other hand, the fundamentally paral-
lel neural network systems, such as
Rosenblatt’s perceptron system, were
not well suited to implementation on
serial computers. Moreover, the per-
ceptron turned out to be rather more
limited than first expected [8], and
this discouraged both scientists and
funding agencies. Although work
continued throughout the 1970s by a

number of workers including Amari,
Anderson, Arbib,
Grossberg, Kohonen, Widrow, and

Fukushima,

others, and although a number of
important results were obtained dur-
ing this period, the work received rel-
atively little attention.

The 1980s showed a rebirth in in-
terest. There seem to be at least five
reasons for this. Three of the reasons
are essentially pragmatic and two the-
oretical. First, on the more pragmatic
side:

1. Today's computers are much
faster than those of the 1950s and
1960s. It is thus possible to use con-
ventional computers to simulate and
experiment with much larger and
more interesting networks than ever
before.

2. Everyone believes that the future
for faster computers must be in paral-
lel computation. Unfortunately, there
is no generally accepted paradigm
for parallel computation. It is gener-
ally easier to build parallel computers
than to find algorithms that are effi-
cient for them. There is a hope that
algorithms which prove efficient and
effective on brain-style computers
may prove a useful general para-
digm for parallel computation.

3. The basic empirical tools of neuro-
science are expanding, and we are
learning more and more about how
the neuron functions and how neu-
rons communicate with one another.
But little is known about how to go
from this information about specitic
neurons to a theoretical account of
how large networks of such neurons
might function. It is hoped that the
theoretical tools developed in the
study of neural network computa-
tional systems will allow for the mod-
eling of real neural networks.

In addition to the preceding three
reasons, there have been two theoret-
ical results which have been devel-
oped well enough to be appreciated.

1. The first of these results i1s due to
Hopfield [6] and provides the mathe-
matical foundation for understand-
ing the dynamics of an important
class of networks. In particular, Hop-
field pointed out that recurrent net-
works with symmetric weights have a
point-attractor  dynamics, making
their behavior relatively simple to
understand and analyze. This obser-
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The problem of learning in neural networks is

stmply the problem of finding a set of connection
strengths which allow the network to carry out the

vation has been extended and ap-
plied by Hinton and Sejnowski [5],
Cohen and Grossberg [1], Smolensky
[14], and a number of others to pro-
vide us with a useful mathematical
understanding of how networks such
as these might be configured to solve
important optimization problems.

2. The second result is an extension
of the work of Rosenblatt and
Widrow and Hoft, to deal with learn-
ing in complex, multilayer networks
and thereby provide an answer to

one of the most severe criticisms of

the original perceptron work, In this
case, it was observed that by selecting
differentiable, nonlinear functions
(such as the sigmoid described ear-
lier) it was possible to use the gradient

search methods of Widrow and Holf

for nonlinear and multilayer net-
works. This provided a technique by
which  multilayer  perceptron-like
devices could be reliably trained. This
procedure, known as the backpropa-
gation learning algorithm, has had a
major impact on the field and is the

primary method employed in most of

the applications we will discuss [11,
16]

Here we focus on the learning re-
sults, since they have had the greatest
influence on applications.

Learning by Example

The problem of learning in neural
networks is simply the problem of
finding a set of connection strengths
which allow the network to carry out
the desired computation. In this sec-
tion we focus on backpropagation,

currently the most popular form of

learning system and the one on which
virtually all of the applications are
based. The usual network architec-
ture is illustrated in Figure 2.
There is a set of input units which
are connected, through a set of so-
called hidden wunits, to a set of output
units. In the general case, there may

desired computation.
EEE

be any number and configuration of
hidden units and connections among
the units. Generally, the hidden units
are configured as a set of hidden-unit
layers—most often there is a single
layer of hidden units, but in some
applications it is convenient to have
two or more layers of hidden units.
(For simplicity, we will restrict discus-
sion here to the case of feedforward
networks in which the activity of a
given unit cannot influence, even
indirectly, its own inputs.) The net-
work is provided with a set of exam-
ple input/output pairs (a training set)
and is to modify its connections in
order to approximate the function
from which the input/output pairs
have been drawn. The networks are
then tested for ability to generalize.

The error correction learning pro-
cedure is simple enough in concep-
tion. The procedure is as follows:
During training an input is put into
the network and flows through the
network generating a set of values on
the output units. Then, the actual
output is compared with the desired
target, and a match is computed. If
the output and target match, no
change is made to the net. However,
if the output differs from the target a
change must be made to some of the
connections. The problem is to deter-
mine which connections in the entire
network were at fault for the error—
this is called the credit assignment (or
perhaps better, the blame assign-
ment) problem. Although the solu-

tion to this problem for the case of

networks without hidden layers has
been known for some time, this is, in
general, a difficult problem, and the
lack of a satisfactory solution was a
major factor in the earlier loss of in-
terest in neural network systems. The
1980s has led to the development of a
rather simple, yet powerful, solution
to this problem. The basic idea is to
define a measure of the overall per-
formance of the system and then to

tind a way to optimize that perfor-
mance. In this case, we can define the
performance of the system as

E =2ty — v
P

where 7 indexes the output units; p
indexes the I/O pairs to be learned; f;,
indicates the target for a particular
output unit on a particular pattern;
vip indicates the actual output for that
unit on that pattern; and E is the total
error of the system. The goal, then, is
It turns
out, if the output functions are differ-
entiable, that this problem has a sim-
ple solution—namely, we can assign a
particular unit blame in proportion
to the degree to which changes in
that unit’s activity lead to changes in
the error. That is, we change the
weights of the system in proportion to
the derivative of the error with re-
spect to the weights. The change in
wj; is thus proportional to

to minimize this function.

9 b
dy; dwy

This simple procedure works re-
markably well on a wide variety of
problems. The problem of learning is
thus reduced to the problem of pa-

rameter estimation.
A key advantage of neural network

systems is that these simple, yet pow-
erful learning procedures can be de-
fined, allowing the systems to adapt
to their environments. Work on the
learning aspect of these neurally in-
spired models is what first led to an
interest in them [9], and it was the
conjecture that learning procedures for
complex networks could never be developed
that contributed to the loss of interest
[8]. Although the perceplron conver-
gence procedure and its variants had
been around for some time, these
learning procedures were limited to
simple one-layer networks involving
only input and output units. There
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The backpropagation learning procedure
has become the single most popular method to train networks.
The procedure has been used to train networks in problem
domains including character recognition, speech recognition,

sonar detection, and many more.

were no hidden units in these cases and
no internal representation. The coding
provided by the external world had
to suffice. Nevertheless, these net-
works have proved useful in a wide
variety of applications (see [18]). Pet-
haps the essential character of such
networks is that they map similar
input patterns to similar output pat-
terns. This characteristic is what al-
lows these networks to make reason-
able generalizations and perform
reasonably on patterns that have
never before been presented. The
similarity of patterns in a connection-
ist system is determined by their
overlap. The overlap in such net-
works is determined outside the
learning system itself by whatever pro-
duces the patterns.

The constraint that similar input
patterns lead to similar outputs can
lead to an inability of the system to
learn certain mappings from input to
output. Whenever the representation
provided by the outside world is such
that the similarity structure of the
input and output patterns is very dif-
ferent, a network without internal
representations (i.e., a network with-
out hidden units) will be unable to
perform the necessary mappings.

In a multilayer network, the infor-
mation coming to the input units is
recoded into an internal representa-
tion, and the outputs are generated
by the internal representation rather
than by the original pattern. If we
have enough connections from the
input units to a large enough set of
hidden units, we can always find a
representation that will perform any
mapping from input to output
through these hidden units.

The existence of multlayer net-
works illustrates the potential power
of hidden units and internal repre-
sentations. The problem, as noted by
Minsky and Papert (8], is that

whereas there is a very simple guar-
anteed learning rule for all problems
that can be solved without hidden
units, namely, the perceptron con-
vergence procedure (or the variation
due originally to Widrow and Hoff
[17]), there has been no equally pow-
erful rule for learning in multilayer
networks. We are thus not assured of
optimal solutions—local minima are
always a possibility. Nevertheless, the
backpropagation procedure is suffi-
ciently robust that
rarely turn out to be serious limita-
tions.

Although the learning results do
not guarantee that we can find a solu-
tion for all solvable problems, our
analyses and simulation results have
shown that as a practical matter, the
backward-error propagation scheme
leads to solutions in virtually every

local minima

case.

Generalization

The backpropagation learning proce-
dure sketched earlier has become,
perhaps, the single most popular
method to train networks. The proce-
dure has been used to train networks
in problem domains including char-
acter recognition, speech recognition,
sonar detection, mapping from spell-
ing to sound, motor control, analysis
of molecular structure, diagnosis of
eye diseases, prediction of chaotic
functions, playing backgammon, the
parsing of simple sentences, and
many many more areas of application
(see [18]). Perhaps the major point of
these examples is the enormous
range of problems to which the back-
propagation learning procedure can
usefully be applied. In spite of the
rather impressive breadth of topics,
and the success of some of these reap-
plications, there are a number of seri-
ous open problems. The theoretical
issues of primary concern fall into

four main areas:

1. The learning problem—can the
network learn how to solve the prob-
lem at hand?

2. The architecture problem—are
there useful architectures, beyond
the standard three-layer network
employed in most of these areas,
which are appropriate for certain
areas of application?

3. The scaling problem—how can we
cut down on the substantial training
time that seems to be involved for the
more difficult and interesting prob-
lem application areas?

4. The generalization problem—
how can we be certain that the net-
work trained on a subset of the exam-
ple set will generalize correctly to the
entire set of exemplars?

The original efforts were focused
on the first of these problems. The
primary applications of our learning
algorithms were to see if a network
could learn some complex nonlinear
function. Thus we focused on such
problems as parity, exclusive-or, and
other similar analytically defined
problems. We found that with a suffi-
ciently large network we could learn
essentially any function. The initial
worries about the role of local minima
and similar problems turned out to
be much less serious than we origi-
nally thought. However, we have
come o understand that the “gener-
alization” problem is much more seri-
ous than we might have thought
This, of course, is just the mirror
image of the learning problem. The
more general our learning proce-
dure, the less constraints we have on
the way the network actually solves
the problem and therefore the less
certain we can be about the network’s
ability to properly generalize to new
cases. In the statistics literature this is
known as the “overfitting” problem.
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Models of many parameters can fit
essentially any function in many dif-
ferent ways. Our problem is to fit the
function in such a way that it maxi-
mizes its ability to generalize to an as
yet unseen collection of data. There
have been essentially two strategies in
the connectionist literature to deal
with this problem.

The first strategy is a version of
“Occam’s Razor”—i.e., the notion
that the simplest hypothesis consis-
tent with the data is the one that
should be chosen. In the world of
connectionist networks this involves
the view that the simplest network
consistent with the data should be
chosen. There are a number of mea-
sures of simplicity in a network. We,
for example, have suggested that the
following variables covary with sim-
plicity: number of weights, number of
units, number of symmetries among
the weights, number of bits per
weight, and so forth. It is possible to
define cost functions which lead to
minimal-complexity networks as
measured by any or all of these mea-
surements. Generally, we find that
minimal networks offer better gener-
alization performance than more
complex networks [15].

The second basic scheme for net-
work training and, in fact, the most
commonly used scheme is a version
of cross-validation. In this scheme,
the data are divided into three parts.
One part is used for training; one
part is used to evaluate the general-
ization performance and is set aside
for a final test; and one part of the
data is used for cross-validation.

The procedure is as follows: follow-
ing each training epoch, the perfor-
mance of the network is evaluated on
the validation set. As long as the net-
work continues to improve on the
validation, set training is continued.
If over-fitting is occurring, the net-
work will at some point begin to show
poorer performance on the valida-
tion data. At that point we stop train-
ing and select the weights which give
optimal performance on the valida-
tion set for testing against the “test
set,” and the performance on this set
is used as a measure of the quality of
the generalization. This method is
reasonably powerful and simple and
often leads to good results. The re-
sults are nearly as good for this

method as for the more complex
method described earlier, and the
training time is generally much less

[2].

Hints for Successful
Applications

Although some authors have sug-
gested that neural networks are sim-
ple black boxes that can be applied
without much consideration of the
details of the problem, most success-
ful applications require great care in
approaching the problem at hand.
Following are a number of considera-
tions that have proved useful in some
areas of application.

1. Be certain to have enough data to
constrain your model sufficiently for
the problem at hand.

2. Carefully design appropriate
input data. This will often require
theory-based data reduction of the
number of input variables. This was
important in the work of Rumelhart
[10] on cursive handwriting. In this
case a coupled oscillator model of
handwriting was used followed by the
parameters of this model, rather than
the underlying temporal data. This
allowed a five-fold reduction in the
size of the input space.

3. Build known symmetries (often
through weight linking) into your
network wherever possible. This al-
lows a substantial reduction in the
number of weights in the network
and allows the network to learn with-
out having each region of the net-
work see each input pattern.

4. Build a probabilistic model of the
task. Make use of “forward models”
to map from a representation of the
input that you want to discover to a
target set that is easy to construct.
This method was also used in the cur-
sive handwriting work. Here the
problem was that we did not want to
have to tell the network exactly where
each character in the word was.
Rather we wanted to simply tell the
network which characters were in the
word. The original network tried to
predict the location of each character
in the word, but we attached a second
network that took the first network’s
guesses as to the location of the char-
acter and computed the probability
that the character was “anywhere” in
the word. This was a fixed network

and was used to compute these prob-
abilities. Thus while the targets could
be simple information about which
characters were in the word, the net-
work could determine where each
character was. The details of this are
given in Rumelhart [10].

5. Use the network to solve problems
it 1s good at, but feel free to combine
the network with other statistical
methods. Making certain you can
offer a clear probabilistic/Bayesian
interpretation of the behavior will
help in interfacing the network with
other statistical methods. It is very
useful to have the network provide
output values which are reasonably
interpreted as probabilities. These
probabilities can then be used to de-
termine confidence levels and to
combine with other sources of evi-
dence. See Curry and Rumelhart [2]
for a useful example. @
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